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Initiation of turbelence is associated with disturbances of finite intensity [1]. Some attempts, as in [2], have
been made to treat this region analytically. The nonuniformity of the local stability * of laminar fluid flow
over the tube cross section has been established experimentally [3,4, 1]. On this finding is based the
interpretation of a number of turbulent transition phenomena, including a characteristic singularity of

the relationship between the resistance coefficient of rough tubes and the Reynolds number under transient
conditions [5].

Expression (1.1) introduced as a measure of stability, and the criterion q, yield satisfactory quantitative
results.

1. The degree of local stability of stationary laminar fluid flow in cylindrical (in the wide sense) tubes will be
characterized by the simplex
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This simplex is analogous to the local Reynolds number introduced in [2] for plane-parallel flows, which is
proportional to the transverse velocity gradient and inversely proportional to the viscosity. In (1.1), v, p, and p are
the velocity, pressure, and density of the fluid, respectively; x and y are Cartesian coordinates in the tube cross
section F; z is the coordinate along the tube axis. Simplex (1.1) constitutes the ratio of the energy variations of a fluid
element for small displacements in the transverse and longitudinal directions, respectively.

Regardless of the degree of stability of laminar flow on the whole over F, there always exists a region of arbi-
trary smallness of g. Therefore the onset of instability should be expected for fairly large values of ¢q. In accord-
ance with this, we assume the existence of such a number q, that g = q, over the entire F is the stability condition
for the flow, while the presence in F of regions with q > g« is the instability condition, i.e., the possibility of initiation
of turbulence.

We reduce (1.1) to dimensionless form. For Poiseuille flow
1d
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where y = py is dynamic viscosity and 1' is the contour of cross section F. Introducing a dimensionless velocity and
dimensionless coordinates (s is the hydraulic radius of the tube)
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(similarly, for the radius vector £ = r/s in a polar system of coordinates and for any linear coordinate in an arbitrary
system), we have

Ago = —1,  ulp, =0 (1.4)
Expressing ¢ through dimensionless variables and R = 2s{v)/v, where the angle brackets denote averaging over

F, we transform (1.1) to

u| Vg u|

o (1.5)

g==r

*Local stability (instability) is a negative (positive) response of the flow in a given small region to the introduced
disturbances.

587



Simplex q is proportional to the Reynolds number and is equal to zero at the contour T and at points (or on
lines) of extremums and at stationary-velocity points. Consequently, a point (or line) of maximum instability in which
supfu| vénul}takes place,will always lie beyond their circumference.

Laminar flow becomes unstable and susceptible to turbulization when supiq} = d,, whence follows the critical
Reynolds number

i
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which is equal to the product of g, and a certain functional F{T'} of the shape of the cross section (i.e., of F or T,
within similarity accuracy).

In practice, turbulization of the flow occurs at Reymolds numbers greater than R, (delayed laminar flow
conditions), since not all disturl-ance types are present in the flow.

2. Let us assess the influence of the shape of F on R, and determine the value of q, by comparing the
corresponding R, and f relations for several cross sections:

a) For a tube of circular cross section (0 < ¢ < 1) we have
u=1, (1 —%, g=RL(t —0¥, =3, Vs (2.1)
the value R% ~ 2800 was obtained experimentally [6, 7].

b) For a plane channel (jn] = 1/2) we have

u =Y (1—4n?), g =3:Rn (1—4), f=2V3 (2.2)

For tubes of rectangular cross section with large side ratios (104:1 and 165:1), a value of R, ~2800 was ob-
tained experimentally [6-8].

For tubes andchannels withcross sections more complex than a circle or an infinite strip, calculations must be
made by a numerical method.

¢) For a tube of square cross section (|4| = 1, Inl = 1), f was obtained on a computer by the net-point method with
a step equal to 1/64 of the side of a square. A value of f ® 2.103 was obtained.

The value R, ~ 2000 was obtained experimentally [9, 6].

d) For a tube of annular cross section,
A A Y E=rnlrpr=0—8KBl="r/r,

where ry, ry, and r are the radius vectors of the walls and the running radius vector) we have [5-7]
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The quantity n} = — (1 ~ k¥»/Ink? corresponds to the maximum of u. Simplex (1.1) is equal to
(1 — % - %o* In %% | ng® — %?| (2.4)
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whence (Fig. 1)
®
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Here %2 is the smaller of the two roots nHk) (k <y <wmg <ny < 1) (Fig. 2) of the equation
2(ne? — u2)? = (g + %) (1 — %* + xPlnxn?) (2.6)

From the corresponding experiments {10~13] we shall use three, in which turbulization was observed at
R ~ 2000, 2700, and 2640 for k =~ 0.186 [12], 0.514 and 0.639 [11], respectively.
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Fig. 2

A comparison of calculated values of f/f° with experimental values of R,/RY is given in the table. Within the
experimental and auxiliary computational uncertainty, these values are in excellent agreement. If the aforesaid effect
of delayed laminar flow conditions is also taken into account, it is not difficult to come to the conclusion that q, is
universal for tubes of various cross sections.

Tube of Plane Tube of Tube of annular section
circu}ar channel squafre |
section section E=0.186 | k=00514 | k= 0.631
R, / R,%, experiment 1 4/s 0.95 0.952 1.28 1.26
I%1 1°] 12 1] 4]
f /1% theory 1 4/a 0.81 1.00 1.23 1.26

Let us determine q, with the aid of the most reliable data selected from numerous experiments performed with
tubes of circular cross section {6, 7}:

q, =R,/ = 2100:3%,V3 ~ 808.3 (2.7)

The accuracy of the value obtained for q, depends on the experimental uncertainty involved in the measurement
of RY.

By the same token, we get for R, = q,f a value of 2800 for a plane channel (which is in excellent agreement with
the experiment) and a value of roughly 1700 for a tube of square cross section (which is by 15% less than the experi-
mental value).

3. Let us examine the points (lines) of maximum instability computed for tubes of various cross sections, and
compare them with available data.

a) According to (2.1), the maximum of q, i.e., the circumference of maximum instability, is characterized by
¢=1/Y3 = 0.57735.

Experiments conducted at values of R close to R?* reveal that weakest attenuation of the introduced disturbances
occurs in the region 0.4 < ¢ <0.6 [3] and the maximum stability of the arising fluctuations is chserved at ¢ = 0.6 [4].

This confirms the theoretical results.
Under turbulent conditions, the region of maximum instability of laminar flow should be characterized by a
maximum furbulence level and hence by maximum turbulent viscosity. In fact, the maximum turbulent viscosity was

determined experimentally for ¢~ 0.6 [14].

b) According to (2.2), the planes of maximum instability in a plane channel are characterized by 1 = = i/2 V3.
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Thus, in a plane channel and in a tube of circular cross section, the maximum value of q occurs at like values of
the relative ordinate 2l and the radius-vector . This result can be deduced also from independent theoretical
considerations [15].

c) In a tube of square cross section, the points of maximum instability lie on the symmetry axes that are parallel
to the sides of the square,

E=0, w=-0.625 40625, =20

The position of these points can be readily interpreted in the physical sense by comparing a square with the circle
inscribed in it (paragraph a).

d) In a tube of annular cross section, q has two maxima, the larger (main) one of which is characterized by the
smaller n,, and the minor maximum by the large root », of Eq. (2.6) (Fig. 2).

Inasmuch as the probability of flow turbulization increases drastically with the formation of the second of the
instability zones n ~w;, n ~ u,, in practice, the onset of turbulence may be expected to occur at Reynolds numbers
that satisfy the inequality R, = Ry <R <R,, where R; (and fi = Rj/q4) correspond to »; in accordance with (2.4) for
q = g4 (Fig. 1). The probability of R being close to R, grows when k approaches unity (i.e., when the symmetry of the
flow diminishes).

In the limiting case of a small curvature of the walls 1 — k = ¢ < 1, we approach the results for a plane channel
xoml—Yoa—Yuw?, el —Ya(ld 1/ V3o +Ys( WY t1/ V2
Biys = 20, (V3 FYs0) (3.1)

In the opposite limiting case of k — 0 (circular tube with a thin coaxial central core), R, decreases indefinitely,
while the circumference of maximum ingtability narrows rapidly toward the center,

ve= 2k 10, wmmek—0, w/ne—>0, Romleg kIn’k-»0 (3.2)

For the secondary local instability maximum we obtain at the limit the same results as for a circular cross
section,

1 ( 6—In3 1 / 2—In3 12 +71n3 —21n23
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The initiation of turbulization at R ~ R, = RY, however, is now unlikely.

With increasing k, the quantities %y, », and R, (0< R, < %3R%) increase monotonically, while », decreases;
R, (Rg(< R, £ 2962) possesses a weak maximum at k ® 0.30 (Figs. 1, 2). Specifically, Ry = R‘,’k for k= 0.18531, and
R, ~ 4/3(R}) for k = 0.03323.

Figure 1 shows also the experimentally determined values of R at which turbulization begins. Points 1, 2, 3, and
4 correspond to data in [10-13]. The agreement of (2.4) and (2.5) with experiment may be considered completely
satisfactory, if we take into consideration the delaying of the laminar flow and the increasing effect of structural
fabrication errors on the true R, as the annular slit is constricted.

4. Let us examine the problem of the influence of wall roughness on the turbulization of the flow and the
resistance coefficient A of the tube.

It is natural to assume that, starting with the value of R for which the distributed roughness A = s penetrates
into the instability region q > q,

R (4.1)

, u>

= % supy {u[Vg,ul}
roughness produces an appreciable change in the nature of the function A (R) toward increasing or more intensely
increasing values. Here, the subscript § corresponds to the locus of points separated by the interval 6 along the inner
normal n (rendered nondimensional in the like manner as the coordinates) from the points on contour T £n (contour T
of cross section F corresponds to the interval A). By the same token, the subscript 0 refers to contour Cepe
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Since the relative roughness 6 is usually very small, (4.1) may be written in the form

, q L % u 8 [ 0%
R z%(u) sup 11[( (ani)o] [(-a-) 7<7n.2)o]}
z—a—<u>sup { 6 > (4.2)
or
@ A R'§ [ du\2
RAE__DV =g =5 ) ud sup” { 0':)} (4.3)
Specifically, for a tube of circular cross section
N TR T RO 4042 e
R e —8 "B =n s~ 5 0 Tamg =W (4.4)

Figure 3 shows Nikuradze's experimental A (R) curves for rough tubes of circular cross section [5]. Points with
R = R! are indicated on the curves. The increase in A, which continues until the similarity region is reached, begins
at these points.

Fig. 3

This indicates that for R, < R < R', turbulent pulsations in a rough tube exhibit a tendency toward attenuation.
Attenuation, however, becomes impossible as soon as constant disturbance sources begin to penetrate into the region

q>q,.

The "permissible" height of distributed roughness was determined experimentally for a tube of annular cross
section [16,1]. A mean value of Rp ~ 120, and a value of Ra = 130 to 140 for real negative pressure gradients were
obtained.

For a plane channel, whose hydraulics is approximated by a tube with a cross section in the form of a narrow
ring, it follows from (4.2) and (4.3) that

, _ Gx _ 2694 A
Rmqym—g—, Ry =~ = 134.7 (4.5)

i.e., there is good agreement with the experiment [16].

5. A certain analogy should be mentioned which exists between the stability criterion q < q, for laminar tube
flow and the Rayleigh stability criterion for Couette flow between rotating cylinders [17]. This criterion results also
from a local flow energy analysis. According to the Rayleigh criterion, the flow is stable when the square of velocity
circulation does not decrease anywhere as the radius vector increases,

-l%(vrP}O (5.1)

and vice versa. Condition (5.1) may be written in the form

fi”_(:_d_v/d_r)<1 (5.2)

i S

The denominator of (5.2) is the value of the pressure gradient, and the numerator is the value of the kinetic
energy density of the fluid, accurate to within the minus sign.
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For dv/dr > 0, (5.2) is fulfilled automatically, as distinct from the opposite case, where —dv/dr = [Vy].

Of the same sense and physical meaning is the inequality

pY Vv
dp [dz

1
7=

1
<—iq* (5.3)

which we have taken as the stability criterion for laminar tube flow. Here, q, is a certain constant expressed by a
natural analog of condition (5.2).
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